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events and was replaced by different algal groups depending 
on the site, yet returned to pre-bleaching levels within 2 yr. 
Overall, our data reveal the resilience of calcifier-dominated 
coral reef communities on Palmyra Atoll that have persisted 
over the last decade despite two bleaching events, demon-
strating the capacity for these reefs to recover from and/
or withstand disturbances in the absence of local stressors.

Keywords  Long-term monitoring · Community 
structure · Benthic algae · Resilience · Climate change

Introduction

Coral reef ecosystems are declining globally due to the com-
bined impacts of local and global stressors. In particular, 
mass bleaching events associated with rising ocean tem-
peratures have continued to increase in both frequency and 
intensity (Hughes et al. 2017) with dire consequences for the 
persistence of coral reef ecosystems. Such events can cause 
reefs to shift from dominance by calcifying, reef-building 
taxa (e.g., corals and crustose coralline algae) to dominance 
by fleshy organisms such as turf and fleshy macroalgae 
(McCook et al. 2001; Smith et al. 2016). This may lead to 
a net negative calcium carbonate budget (Takeshita et al. 
2016), the loss of structural complexity (Graham and Nash 
2013), and the degradation of ecosystem services (Moberg 
and Folke 1999; Woodhead et al. 2019). Coral reef ben-
thic communities are highly dynamic (Nyström et al. 2000) 
and long-term monitoring is required to tease apart natural 
mechanisms of change (e.g., competition) following large-
scale disturbances such as temperature-induced bleaching.

Periods of high thermal stress can result in coral bleach-
ing, subsequent partial or full colony mortality, decreases 
in live coral cover, and corresponding increases in turf or 

Abstract  The prevalence of coral bleaching due to thermal 
stress has been increasing on coral reefs worldwide. While 
many studies have documented how corals respond to warm-
ing, fewer have focused on benthic community responses 
over longer time periods or on the response of non-coral taxa 
(e.g., crustose coralline algae, macroalgae, or turf). Here, 
we quantify spatial and temporal changes in benthic com-
munity composition over a decade using image analysis of 
permanent photoquadrats on Palmyra Atoll in the central 
Pacific Ocean. Eighty permanent plots were photographed 
annually between 2009 and 2018 on both the wave-exposed 
fore reef (FR, 10 m depth, n = 4 sites) and the wave-sheltered 
reef terrace (RT, 5 m depth, n = 4 sites) habitats. The El 
Niño events of 2009–2010 and 2015–2016 resulted in acute 
thermal stress and coral bleaching was observed at both reef 
habitats during these events. Across 10 yr and two bleaching 
events, the benthic community structure on Palmyra shows 
evidence of long-term stability. Communities on the RT 
exhibited minimal change in percent cover of the dominant 
functional groups, while the FR had greater variability and 
minor declines in hard coral cover. There was also spatial 
variation in the trajectory of each site through time. Coral 
cover decreased at some sites 1 yr following both bleaching 
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fleshy algal cover (Shulman and Robertson 1996; Ostrander 
et al. 2000; McClanahan et al. 2001; Ridgway et al. 2016; 
De Bakker et al. 2017). In some cases, there has been no 
significant mortality of hard corals after a bleaching event 
(Gleason 1993; Hardman et al. 2004). However, for many 
of these studies, reefs were surveyed up to 1 yr post-bleach-
ing at most, with no further time points. Given that benthic 
organisms colonize open substrata on reefs at different rates 
(McClanahan et al. 2001; Diaz-Pulido and McCook 2002), 
longer-term perspectives before and after disturbance would 
allow for better indication of which ecosystem changes are 
transient or permanent.

Multi-year data sets from permanent sites are informative 
because a single time point does not reflect the successional 
trajectory of a given reef. However, there are not enough 
long-term studies of coral reef community composition 
which precisely track changes in entire benthic assemblages 
through time. Most large-scale regional or global monitor-
ing efforts (Souter et al. 2020; Towle et al. 2022) typically 
measure coral cover alone or some other indicators of reef 
status through opportunistic sampling, which is certainly 
valuable but future efforts could implement a more holistic 
(i.e., assessing benthic community composition) and pre-
cise (e.g., using permanent plots) approach. Existing decadal 
studies incorporating all benthic functional groups have doc-
umented phase shifts from hard corals to either macroalgae 
(Done et al. 2007; Jones et al. 2020), cyanobacterial mats 
(De Bakker et al. 2017), or octocorals and sponges (Ruzicka 
et al. 2013; Reverter et al. 2021) following major bleach-
ing events. Studies extending multiple years post-bleaching 
often found that there was a reversal back to a coral-domi-
nated or other calcifying state (Done 1992; Adjeroud et al. 
2009; Graham et al. 2015; Cruz-García et al. 2020). Overall, 
these data suggest that benthic community response var-
ies depending on the duration of time since a disturbance 
event as well as the location, thermal severity, and ecological 
context (e.g., abundance of herbivores). Responses can also 
vary by habitat, site, depth, genus, and/or species within a 
given functional group (Muhando and Mohammed 2002; 
Darling et al. 2013; Krishnan et al. 2018). Nevertheless, 
most studies evaluating the effects of warming on benthic 
community composition through time have reported losses 
in coral cover worldwide (see Supplementary Table 1 for 
specific examples).

The majority of coral bleaching studies to date have meas-
ured at least one other benthic component besides hard cor-
als; usually these included algae, though the algal designa-
tions have been broad (Supplementary Table 1). Crustose 
coralline algae (CCA) and turf algae are often lumped into 
a single category (McClanahan 2000; Ridgway et al. 2016) 
or combined with bare space (Aronson et al. 2002) or mac-
roalgae (Ostrander et al. 2000; Stuart-Smith et al. 2018). The 
studies that did not distinguish between algal groups noted 

transitions from coral to algal-dominated states and assumed 
a negative correlation between corals and algae (Ostrander 
et al. 2000; Stuart-Smith et al. 2018). Given that algae are a 
highly diverse (i.e., taxonomically, morphologically, and eco-
logically) assemblage of primary producers that are naturally 
abundant on reefs, it is important to understand how different 
algal functional groups respond to thermal stress and what role 
they may play independently as benthic coral reef communities 
change over time.

CCA are encrusting, calcifying red algae that provide set-
tlement cues for larval corals (Harrington et al. 2004) and 
serve as reef builders that cement the reef framework (Setch-
ell 1930). Notably, CCA have been found to be sensitive to 
thermal stress (Anthony et al. 2008; Martin and Gattuso 2009; 
Short et al. 2015). In contrast, turf algae are a heterogenous 
consortium of largely fleshy, short filamentous algae, juvenile 
macroalgae, or cyanobacteria (Adey and Steneck 1985; Harris 
et al. 2015). They opportunistically and rapidly occupy open 
space following coral bleaching or disease outbreaks (Diaz-
Pulido and McCook 2002) because they are fast-growing and 
can thrive under conditions not optimal for corals (McCla-
nahan 1997). Finally, macroalgae can be further classified as 
fleshy or calcareous taxa. Fleshy macroalgae can be harm-
ful to corals via abrasion, shading, and/or the release of dis-
solved organic carbon, allelochemicals, or pathogens (McCook 
et al. 2001; Rasher and Hay 2010; Barott and Rohwer 2012). 
Calcareous macroalgae vary in their interaction with corals 
but are generally more benign (Brown et al. 2020). However, 
responses of fleshy and calcareous macroalgae can be mixed, 
species-specific, and/or fluctuate seasonally. Further, these 
responses cannot be expected to be uniform across reefs expe-
riencing varying degrees of anthropogenic stressors.

Here, we use a decade-long time series of benthic com-
munity data from eight permanent monitoring sites across 
two reef habitats on Palmyra Atoll to investigate coral reef 
benthic dynamics in an ecosystem with minimal local stress-
ors through two bleaching events. Using image analysis of 
permanent photoquadrats, we examined (i) how key functional 
groups changed following each bleaching event, (ii) the sta-
bility of reef builders (i.e., corals and CCA) relative to fleshy 
algae (i.e., turf and fleshy macroalgae) through time, and (iii) 
interannual and decadal variation of benthic community com-
position. These data provide valuable insight on natural ben-
thic community dynamics and their response to thermal stress.

Methods

Study site

Palmyra Atoll National Wildlife Refuge (5.89° N, 162.08° 
W) is a remote atoll in the Northern Line Islands, located 
approximately 1300 km south of Hawai’i (Fig. 1). Palmyra 
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was temporarily inhabited and modified by the US Navy 
during the World War II era, which involved lagoon dredg-
ing and causeway construction. Since 2001, however, it 
has been federally protected within the Pacific Remote 
Islands Marine National Monument and therefore provides 
a natural laboratory to study the effects of global change 
on benthic community dynamics in the presence of high 
herbivory (Hamilton et al. 2014) and the absence of local 
stressors (Sandin et al. 2008; Braun et al. 2009; Williams 
et al. 2010; Fox et al. 2019b).

Four permanent monitoring sites were established in 
each of Palmyra’s primary reef habitats: the wave-exposed 
fore reef (FR, 10 m depth) and the shallower, more wave-
protected western reef terrace (RT, 5 m depth). At each 
site, ten permanent plots (90 cm × 60 cm) were marked 
along a 50 m transect (Supplementary Fig. 1). Photographs 
of the individual plots (i.e., “photoquadrats”) were col-
lected by divers using a Canon G-series camera attached 
to a PVC tripod to maintain fixed distance from and ori-
entation to the substrate. Sites were visited at least once 
per year in the late summer or early fall between 2009 
and 2018.

Benthic community analysis

We used quantitative image analysis to determine the total 
planar area of benthic organisms within each photoquad-
rat (Supplementary Fig. 1). In Adobe Photoshop (Creative 
Cloud), we digitized the borders of live hard corals, soft 
corals, and algal patches within each quadrat and identi-
fied them to the finest possible taxonomic resolution, which 
were later pooled by functional group. We used Photoshop’s 
image analysis tool to convert pixel counts to planar area 
measurements (cm2) based on the dimensions of the photo-
quadrat frame (90 cm × 60 cm).

Temperature history

We estimated monthly mean sea surface temperature (SST) 
on Palmyra throughout the duration of this study using both 
in situ sensors and NOAA’s 0.25° daily Optimum Interpola-
tion Sea Surface Temperature (OISST v2.0). In situ meas-
urements were made using SeaFET and SeapHOx sensors 
(Bresnahan et al. 2014), via the thermistor in the Durafet III 
combination electrode (SeaFET) or the Seabird Electron-
ics SBE37 microcat (SEApHOx). Temperature data were 
collected every 30 min in at least one site per habitat, from 
which monthly means were generated and combined with 
satellite measurements (Fig. 2; Supplementary Fig. 2). Coral 
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bleaching occurred during two marine heatwaves (i.e., pro-
longed periods of thermal stress) associated with El Niño 
Southern Oscillation events in 2009–2010 and 2015–2016 
(Williams et al. 2010; Fox et al. 2019b). Cumulative thermal 
stress was quantified as Degree Heating Weeks (DHW) using 
the NOAA Coral Reef Watch program 50 km product (Liu 
et al. 2014), which indicates that DHWs on Palmyra reached 
9.1 °C weeks by late November 2009 and 11.9 °C weeks by 
early October 2015 (https://​coral​reefw​atch.​noaa.​gov/​data3/​
50km/​vs/​times​eries/​vs_​ts_​Palmy​raAto​ll.​txt). Bleaching was 
observed during both heatwaves but was more widespread in 
2015 (Williams et al. 2010; Fox et al. 2019b).

Statistical analysis

All analyses were conducted in R software version 3.6.3 (R 
Core Team 2018). Temporal changes in benthic commu-
nity composition were quantified within individual quadrats 
and summarized at the site level (n = 10 quadrats per site). 
We used non-metric multidimensional scaling (nMDS, via 
metaMDS in vegan for R; Oksanen et al. 2019) based on 
Bray–Curtis dissimilarity to visualize the trajectories of ben-
thic community composition at each site through time. We 
did not transform percent cover data due to the absence of 
rare species (Clarke et al. 2006). We then performed a three-
way permutational multivariate analysis of variance (PER-
MANOVA) with 9999 unrestricted permutations (adonis in 
vegan; Anderson 2001; Oksanen et al. 2019) to determine 
whether similarity in multivariate community composition 
varied across time, habitats, and/or sites nested within habi-
tat. Habitat (two levels: FR and RT) and time (ten levels, 
one for each yearly time point) were treated as fixed factors, 
whereas site (eight levels) was considered a random factor. 
We also tested for possible interactions between factors to 
see whether sites and/or habitats were changing differently 
over time. Repeated measures were not incorporated because 
we used site level as opposed to quadrat-level data.

To investigate short-term changes in benthic communities 
following bleaching, we calculated the mean difference in 

percent cover values for each functional group, by quadrat 
at each site, 1 yr after the respective bleaching events (i.e., 
2010 and 2016). We ran two-tailed t tests to determine which 
sites experienced significant changes in benthic cover post-
bleaching. We used two-tailed t tests rather than planned 
contrasts within sites because we evaluated whether changes 
in cover were significantly less than or greater than zero, as 
opposed to whether paired values differed between years. 
For sites where hard coral cover declined, we plotted the 
benthic community composition (in terms of mean percent 
cover data averaged across quadrats, by site) at all available 
time points, within 2 yr of each bleaching event.

We quantified net change in percent cover from 2009 to 
2018, for each benthic functional group as well as for reef 
builders and fleshy algae, by subtracting initial (i.e., at the 
2009 time point) from final (2018 time point) values by 
quadrat and then calculating the mean differences and 95% 
confidence intervals by site. We ran a two-way analysis of 
variance (ANOVA) for each functional group separately to 
test whether these net differences varied by habitat and/or 
site. We then compared net differences through two-tailed t 
tests to identify which sites experienced significant changes 
not overlapping zero (e.g., an increase or decrease in func-
tional group percent cover) across the 10 yr.

Results

Benthic community structure through time

The composition of benthic coral reef communities across 
sites on Palmyra is distinct between habitats and sites over 
time (Fig. 3). Between 2009 and 2018, average hard coral 
cover was 33.3 ± 0.8% (mean ± SE) on the FR (Fig. 3a) and 
49.2 ± 0.9% on the RT (Fig. 3f). Coral cover was generally 
stable through time on the terrace but exhibited a gradual 
decline on the FR between 2009 and 2018. While coral 
cover recovered at the terrace sites after the 2015 bleach-
ing event, it continued to decline on the FR, particularly 
at FR3 (Fig. 3b). A significant habitat by time interaction 

Fig. 2   Temperature history 
from Palmyra’s fore reef and 
reef terrace in the past decade, 
as measured by both in situ 
sensors (with data averaged by 
habitat type) and satellites, via 
NOAA’s Optimum Interpola-
tion Sea Surface Temperature. 
The dashed horizontal line at 
29.4 °C represents the estimated 
bleaching threshold for Palmyra 
(Fox et al. 2019b) 25
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(PERMANOVA, p < 0.001; Supplementary Table 2) sug-
gests that despite site-level variability, each habitat is chang-
ing differently over time (Supplementary Fig. 3). Further, it 
seems that site is a better predictor for benthic community 
response than year or habitat, explaining 32.0% of the vari-
ation (R2 = 0.320; Supplementary Table 2).

The nMDS (Fig. 4) showed that the sites were each 
characterized by a unique assemblage of benthic organisms 
(e.g., primarily CCA at FR9 or primarily turf at RT13) as 
well as individualized trajectories. There was more overlap 

among the RT sites (Fig. 4b) as compared to the FR sites 
(Fig. 4a), suggesting that benthic composition is more 
similar among the different terrace sites than the FR sites. 
Despite the 10-yr time span, the community assemblage 
at each site remained relatively consistent through time 
(i.e., the lines representing sites generally occupy the same 
region in theoretical two-dimensional space).

The hard coral community on Palmyra’s RT was domi-
nated by table Acropora and encrusting Montipora spp., 
while the FR had more taxonomic diversity but less hard 
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coral cover overall. Soft corals (mainly Sinularia spp. and 
Lobophytum spp.) only occurred on the FR (especially 
FR7, Fig. 3d) with an overall average of 10.0 ± 1.0% cover 
(Fig. 3a). Macroalgae were also more abundant on the 
FR, accounting for 21.8 ± 0.6% of the benthos (Fig. 3a) 
compared to 12.9 ± 0.6% on the RT (Fig. 3f). The most 
abundant macroalgal species were Halimeda spp., Lobo-
phora spp., and members of the Peyssonneliaceae com-
plex. CCA were most abundant on the FR, accounting 
for over a quarter of the benthos (25.7 ± 0.7%; Fig. 3a), 
compared to the RT (15.3 ± 0.7%; Fig. 3f). In contrast, 
turf algal cover was higher on the terrace (21.9 ± 0.9%; 
Fig. 3f) relative to the FR (11.5 ± 0.5%; Fig. 3a). Of all 
benthic functional groups, macroalgae and turf were the 
most variable through time.

Almost all sites on Palmyra were dominated by reef 
builders as opposed to fleshy algae (Fig. 5). At one site on 
the RT (RT10), the cover of reef builders declined from 
2014 to 2015 from 76.8 ± 15.8 to 50.9 ± 7.9%, while the 
cover of fleshy algae rose from 16.6 ± 5.7 to 40.7 ± 6.9%, 
but by 2018, they returned to their pre-disturbance levels 
(Fig. 5i). An increase in fleshy algae and corresponding 
decrease in reef builders was also observed to a lesser 
extent at both FR9 (Fig. 5e) and RT1 in 2016 (Fig. 5g) 
but was similarly temporary. Ultimately, there is no indi-
cation of a shift from reef builders to fleshy algal dom-
inance. Overall, the FR (Fig. 5a) had 57.4 ± 9.1% reef 
builder cover and 13.4 ± 3.6% fleshy algal cover, while 
the RT (Fig. 5f) had 64.3 ± 10.3% reef builder cover and 
28.1 ± 5.9% fleshy algal cover.

Responses of benthic communities to thermal stress

Coral cover did not change at five out of eight sites and 
declined at the remaining three sites (FR3, FR9, and RT13) 
by an average of 6.1% ± 1.6% (Fig.  6a; Supplementary 
Table 3) in the year following the 2009 bleaching event. 
This free space was colonized by different algal functional 
groups depending on the site (macroalgae at FR3, CCA at 
FR9, and turf at RT13) but in all cases, the sites returned to 
the former pre-bleaching levels of coral cover within 2 yr 
(Fig. 7a–c). One year after the 2015 bleaching event, hard 
coral cover declined at three of the same sites as documented 
in 2009–2010 as well as at an additional site, RT4, by 
6.8% ± 0.4% on average (Fig. 6e; Supplementary Table 3). 
This space transitioned to CCA at FR3, turf algae at FR9, 
macroalgae and turf at RT13, and CCA and macroalgae at 
RT4 (Fig. 7d–g). Within 2 yr, baseline coral cover was once 
again restored at all sites except for one (FR3; Fig. 7d).

Net change in benthic cover over a decade

Between 2009 and 2018, benthic communities on Palmyra 
exhibited habitat-specific dynamics, and net trajectories 
varied among sites (Supplementary Table 4). Coral cover 
decreased at three of the four FR sites (FR3, FR5, and FR7) 
by 14.4% ± 2.6% but remained constant on the shallow RT 
(Fig. 8a; Supplementary Table 5). Cover of CCA and mac-
roalgae remained constant at all sites except FR3, where they 
slightly increased (Fig. 8b, c; Supplementary Table 5). Turf 
cover also slightly increased at FR9 (Fig. 8d) but there were 
no significant net changes at any other sites. The abundance 
of reef builders decreased at three of the FR sites (FR3, FR7, 
and FR9) by 9.4% ± 0.7% on average, but did not change 
significantly on the terrace. Fleshy algal cover increased at 
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two FR sites (FR7 and FR9) by 8.2% ± 0.7% on average, and 
one terrace site (RT1; Supplementary Table 5) but did not 
change at the remaining sites.

Discussion

Marine heatwaves are increasing in frequency and magni-
tude (Oliver et al. 2018; Smale et al. 2019) with widespread 
declines in coral cover (Ridgway et al. 2016; De Bakker 
et al. 2017; Stuart-Smith et al. 2018) and devastating con-
sequences for coral reefs globally (Hughes et al. 2018), yet 
some coral communities are able to resist and/or recover 
(Adjeroud et al. 2009; Cruz-García et al. 2020; Fox et al. 
2021). Here, we quantified the spatial and temporal dynam-
ics of benthic coral reef communities on Palmyra Atoll, 
which have remained largely unchanged on a decadal scale 
despite two El Niño-associated bleaching events. These find-
ings, based on 80 permanent plots from two distinct reef 

habitats, demonstrate the resilience of Palmyra’s reefs at 
least up until the present time.

Long-term monitoring of coral communities at multiple 
sites allowed us to detect site-specific patterns of bleaching-
induced mortality as well as evidence of recovery which is 
often not apparent in other studies (Supplementary Table 1). 
Coral cover declined on Palmyra at three out of eight sites 
1 yr post-bleaching in 2009 and those same sites declined 
again after the 2015 event, along with an additional site. This 
indicates that these sites may be more susceptible to bleach-
ing than the others. Two of the sites that declined in coral 
cover are most proximate to the dredged channel that flushes 
lagoonal water out to the open coast (Rogers et al. 2017). 
While lagoon outflow may provide heterotrophic resources 
that can augment coral nutrition and facilitate their recovery 
(Fox et al. 2019a), high turbidity of these waters can reduce 
light available for photosynthesis and surface waters may 
also be warmer than surrounding oceanic waters. Williams 
et al. (2010) found that exposure to turbidity was the single 
best predictor of bleaching on Palmyra during the 2009 event 

Fig. 6   Changes in percent 
cover (mean ± SE) by site for 
each major benthic group, 1 yr 
following the first (a–d) and 
second (e–h) bleaching events 
in 2009 and 2015. Significance 
symbols for sites whose net 
change is different than zero 
(p < 0.05 according to two-tailed 
t tests; Supplementary Table 3) 
are shown. Dashed horizontal 
lines indicate no change
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and this was directly tied to lagoonal outflow. Interestingly, 
although these sites suffered some mortality following the 
bleaching events, they were able to recover quickly, which 
suggests that a link to the lagoon during “normal” condi-
tions may positively influence coral growth rates (e.g., via 
heterotrophic feeding).

Incorporating key algal functional groups in our study 
provided further insight into benthic successional dynamics. 
Turf algae are known to be the first to colonize after distur-
bances and persist for up to 2.5 yr (Diaz-Pulido and McCook 
2002) while CCA are less competitive and slower growing 
(Adey and Vassar 1975; McClanahan 1997). However, since 
herbivores will preferentially feed on turf algae (Vermeij 
et al. 2010; Hamilton et al. 2014; Kelly et al. 2016), CCA 
can dominate in the presence of high herbivory (Steneck and 
Dethier 1994; Littler et al. 2006). On Palmyra, declines in 
coral cover were followed by increases in turf, macroalgae, 

and/or CCA within 1 yr depending on the site, but at almost 
all of these sites, coral cover returned to pre-bleaching lev-
els after 2 yr. Intense grazing by herbivores on Palmyra 
(Edwards et al. 2014; Hamilton et al. 2014) may have led 
to calcifier dominance and coral recovery on shorter time 
scales (Fox et al. 2019b). Ultimately, over the 10 yr time 
span, there was minimal net change in any benthic functional 
group.

Despite the general stability of Palmyra’s reefs, we found 
a gradual decline in coral cover at three of the FR sites, 
which has accelerated since 2015. The rate of this decline 
at some sites suggests it is not directly driven by bleaching-
associated mortality but rather by a more recent change 
in the system. This may be due to an ongoing outbreak of 
crown-of-thorns sea star (COTS) on the FR that was first 
observed in 2017 (personal observation). Another potential 
cause of decline is invasion by the corallimorph, Rhodactis 

Fig. 7   Bar plots of benthic 
community composition for 
up to 2 yr following the 2009 
(a–c) and 2015 (d–g) bleach-
ing events at sites that declined 
in hard coral cover. Note that 
x-axis values correspond to 
months since the thermal distur-
bance (e.g., “0” is at the time of 
bleaching)
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howesii, which is an aggressive competitor to corals (Work 
et al. 2008; Chadwick and Morrow 2011) that has continued 
to increase in abundance at certain sites on Palmyra, particu-
larly FR5 (Carter et al. 2019).

Spatial variability in benthic community structure across 
the FR is also known to be driven by wave energy and strong 
upwelling or downwelling events, which are modulated by 
reef slope and bathymetry (Gove et al. 2015; Williams et al. 
2018). Here, we show that the two western-most FR sites 
were dominated by hard corals or a combination of corals 
and CCA, while the two centrally located sites had a more 

even distribution across different functional groups with 
higher percent cover of soft corals, macroalgae, and turf 
algae. The shallower RT sites are less wave-exposed (Gove 
et al. 2015), physically closer to one another, and are gen-
erally more similar to one another in benthic community 
composition than FR sites.

Throughout the decade, there was less coral mortality and 
higher recovery observed at RT sites in comparison with FR 
sites. Because of the shallow and wave-protected nature of 
the RT habitat, sites here undergo more diurnal variability 
in temperature than the FR sites (Fox et al. 2019b) as well 

Fig. 8   Box plots of the 
distributions of net changes in 
percent cover of major benthic 
groups, by site, between only 
the initial and final time points 
(September 2009 and Octo-
ber 2018). Mean values and 
95% confidence intervals are 
provided in Supplementary 
Table 5. Significance symbols 
for sites whose net change is 
different than zero (p < 0.05 
according to two-tailed t tests) 
are shown. Dashed horizontal 
lines indicate no change
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as large diel fluctuations in pH and dissolved oxygen (Take-
shita et al. 2016; Cyronak et al. 2020). The regular exposure 
of corals at these sites to changes in temperature may have 
pre-acclimated them to warmer conditions, and perhaps as 
such, they experience less bleaching and mortality than cor-
als at the FR sites (Donner 2011; Safaie et al. 2018). Pre-
vious studies have shown that Palmyra’s FR communities 
appear to be less resistant to bleaching and post-bleaching 
mortality than at the terrace (Fox et al. 2019b). While we 
did not measure bleaching responses specifically, our results 
corroborate these observations. Differential responses by 
habitat or sites have also been mentioned in previous stud-
ies (McClanahan 2000; McClanahan et al. 2001; Muhando 
and Mohammed 2002; Done et al. 2007; Guest et al. 2016). 
Here, the significant interaction between habitat and time 
(Supplementary Table 2; Supplementary Fig. 3) indicates 
that these communities are changing differently over time. 
This variation is likely related to site-specific differences in 
oceanographic conditions.

On Palmyra, benthic reef communities at all sites sur-
veyed aside from one were dominated by reef builders. Nota-
bly, the site with a more even distribution of fleshy algae and 
reef builders (RT13) is the site most proximate to the lagoon, 
where sedimentation or access to higher concentrations of 
inorganic nutrients may have resulted in more fleshy algal 
cover. Dominance by reef builders at the majority of sites 
studied here suggests that Palmyra’s reefs are in a state of net 
calcification and growth (Goreau 1963; Perry et al. 2017). 
Reef builders such as CCA promote coral recruitment and 
regrowth, whereas turf and other fleshy algae can prevent 
coral settlement, inhibit growth, or otherwise harm corals 
(Birrell et al. 2005; Price 2010; Barott and Rohwer 2012). 
Past studies consisting of single snapshot or baseline surveys 
have shown similar abundance of reef-building organisms on 
remote and/or uninhabited islands across the Pacific, while 
more impacted or populated islands tend to be dominated 
by fleshy algae (Knowlton and Jackson 2008; Sandin et al. 
2008; Smith et al. 2016).

Interestingly, we noticed some cases of substantial mac-
roalgal decline (e.g., up to 50% within a single quadrat at 
FR5) following both bleaching events. This was largely 
attributed to the calcareous algae, Halimeda spp., which 
account for much of the macroalgal community on Palmyra. 
Due to their high growth, calcification, and rapid turnover 
rates, they contribute significantly to carbonate production 
on coral reefs (Rees et al. 2007). Additionally, they are holo-
carpic, releasing all of their gametes during reproduction 
and dying thereafter (Hillis-Colinvaux 1980). Since little 
is known about sexual reproduction in tropical green algae 
(Clifton 2013), it is unclear whether thermal stress triggered 
their reproduction and subsequent mortality. Nevertheless, 
if Halimeda populations are indeed sensitive to warm-water 

events, this could have negative implications for overall 
reef carbonate budgets, highlighting a research gap.

While Palmyra’s reefs did experience warming and con-
sequent bleaching, these events were not nearly as extreme 
as those experienced by other reefs in the central Pacific. 
For example, at the uninhabited Jarvis Island, where maxi-
mum accumulated thermal stress was 22.25 DHWs (Vargas-
Angel et al. 2019), in contrast to 11.9 DHWs on Palmyra 
(Fox et al. 2019b), catastrophic losses in coral cover of up 
to 95% were reported following the 2015–2016 bleaching 
event (Barkley et al. 2018). Similarly, Kiritimati Atoll expe-
rienced unprecedented thermal stress exceeding 25–30+ 
DHWs between 2015 and 2016 (Claar et al. 2019) and con-
sequently, over 80% coral mortality occurred (Baum et al., 
unpublished data). Howland, Baker, and Kanton Islands 
experienced substantially less thermal stress during this 
event (NOAA Coral Reef Watch) and had reductions in 
coral cover of only around 30% at Howland and Baker with 
little discernable mortality at Kanton (Brainard et al. 2018). 
Thus, not surprisingly, bleaching-related mortality across 
this region seems to be strongly correlated to the degree of 
thermal stress experienced at a given location, among other 
factors. While we report evidence of stability in Palmyra’s 
benthic reef communities, we must interpret these trends 
within the context of Palmyra’s thermal history. If more 
extreme and/or frequent bleaching events affect Palmyra in 
the future, the consequences are as of yet unknown.

In conclusion, the results of a decade of monitoring on 
Palmyra’s coral reefs reveal remarkable resilience despite 
two El Niño-associated bleaching events. It is unclear 
whether the resistance and recovery observed here are 
due to the lack of local human impacts, acclimation and/
or adaptation, or the degree of thermal exposure relative 
to other more-impacted locations. Nonetheless, Palmyra’s 
reefs provide a unique opportunity to better understand 
benthic community dynamics and successional trajectories 
in the face of global change. This data set is not only a 
testament to Palmyra’s resilience, but also a backdrop from 
which to consider the adaptation and acclimation potential 
of coral reef communities.
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